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The generalized corresponding-states principle (GCSP), based on the properties 
of two nonspherical reference fluids, has been shown to be a powerful technique 
for the correlation and prediction of thermodynamic properties. In this work we 
show GCSP calculations of enthalpy and enropy departures for pure fluids and 
fluid mixtures. The mixtures studied include those conforming well to traditional 
corresponding states theory (e.g., n-pentane +n-octane), as well as those that 
have not hitherto been amenable to such treatments (e.g., n-pentane + ethanol). 
It is shown that the GCSP method works well for all classes of mixtures and 
compares favorably with other methods of prediction. The use of cubic 
equations of state to represent the reference fluids gives the GCSP method 
flexibility while maintaining accuracy in the prediction. No adjustable 
parameters are required in the GCSP calculations of enthalpy and entropy 
departures. 
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1. INTRODUCTION 

The corresponding-states principle (CSP) is a useful tool for the prediction 
of thermodynamic properties of fluids and fluid mixtures from the known 
properties of pure substances. The principle originated with van der Waals, 
who postulated that all fluids behave similarly at the same reduced tem- 
perature and volume. This two-parameter CSP (since a knowledge of two 
parameters, Tc and Vo, is required to predict the properties of any one 
fluid) is applicable only to spherical molecules. Pitzer [1] proposed a 
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three-parameter corresponding-states principle and showed that fluids not 
exhibiting strong polarity or association could be well correlated using the 
three parameters To, Pc, and co. The Pitzer formulation was recently put 
into a form suitable for digital computation by Lee and Kesler [2]. The 
three-parameter CSP is, in theory, applicable only to nonpolar fluids. 
However, a more general form [3] using two reference fluids can be 
applied to a wider range of fluids, including those exhibiting polarity. The 
superiority of this general form, termed the generalized corresponding- 
states principle (GCSP), has been demonstrated for the calculation of ther- 
modynamic and transport properties [4-6] and phase equilibria [7, 8] in 
the recent literature. In this work, we describe the extension of the method 
to enthalpy and entropy calculations. Tarakad and Danner [9] have com- 
pared a number of equation of state methods, as well as the Lee-Kesler 
corresponding-states method, for their ability to predict enthalpies of a 
variety of fluids and concluded that the Lee-Kesler method gave the best 
overall predictions of this thermodynamic property. The GCSP method has 
therefore been compared with the Lee-Kesler method in the calculations 
described below. 

2. G E N E R A L I Z E D  C O R R E S P O N D I N G - S T A T E S  P R I N C I P L E  

The basic mathemtical statement of the three-parameter correspon- 
ding-states principle proposed by Pitzer is given by 

Z [ T .  Pr, co] = Z(~ Pr]  + c~ Pr ]  (1) 

In this equation, Z (~ is the compressibility of a simple spherical fluid 
(argon) at the same reduced temperature T r ( = T/Tc) and reduced pressure 
Pr (=PIPe) as the fluid of interest, and Z (ll is a complicated deviation 
function. In the Pitzer formulation, Z/~ and Z v) are given in tabular form, 
as are other thermodynamic functions which can be derived from the com- 
pressibility. 

In order to obtain an analytical representation of the Pitzer method 
suitable for digital computation, Lee and Kesler [2] reformulated the 
three-parameter corresponding-states principle as follows: 

z = z ~~ + [co/co(r~] {Z(r) _ zfOl} (2) 

where Z I~) in Eq. (1) has been replaced by an interpolation based on the 
properties of a (heavy) nonspherical reference fluid (r) and a spherical 
reference fluid (0). 

Both Eq. (1) and Eq. (2) consider the compressibility of a real fluid as 
a Taylor-series expansion about the compressibility of a spherical reference 
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fluid, with the acentric factor co being the expansion variable and the 
Taylor series being truncated after the first-order term. It should be noted 
that the derivative (SZ/Sco)= Z ~11 in Eq. (1) has been replaced by its finite 
difference [Z  (r) - ZI~ (r) - 0] in Eq. (2). 

Interpreting Eq. (1) as a Taylor-series expansion around a spherical 
reference fluid suggests an alternative formulation of the corresponding- 
states principle which will greatly extend its accuracy as a well as its 
applicability. This reformulation, termed the generalized corresponding- 
states principle (GCSP), consists of a Taylor-series expansion about some 
suitably chosen nonspherical reference fluid and is given by 

Z 7__ Z (rl)  -~ {co  - (D (rl) /(yj(r2) __ (D( r l )}  . ( z ( r 2 >  __ z ( r l  )) (3) 

Here, superscripts rl and r2 refer to two reference fluids which are chosen 
so that they are similar to the pure fluid(s) of interest or, in the case of 
mixtures, to the key components in the mixture. If one of the reference 
fluids is taken to be a spherical fluid with zero acentric factor, then Eq. (3) 
reduces to Eq. (2). However, with a suitable choice of reference fluids, 
Eq. (3) might be expected to yield more accurate predictions of ther- 
modynamic properties for a wider variety of fluids than Eq. (2), and we 
have confirmed this in our previous studies. 

The linear dependence of Z with co makes it possible to develop 
expressions of a similar form for derived properties. Differentiation of 
Eq. (3) with respect to T~ at constant Pr leads to 

x = ~ " + ~  - co-co~' ], { x  "2' x"' 
- -  l i D ( r 2 )  - -  CO(rl ) J  - -  1} ( 4 )  

where 

H O _ H  s O _ s  
x = - -  or (5) 

RTc R 

and the individual terms are evaluated using particular reference fluid 
properties. Equations (4) and (5) form the basis of our enthalpy and 
entropy calculations described below. 

2.1. Extension to Mixtures  

The GCSP can be readily extended to mixtures using a one-fluid 
model to calculate the pseudocritical properties Tom, Pcm, and co m. The 
choice of mixing ruls is of special importance in corresponding-states 
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theory, and we have developed [7, 83 an appropriate set of mixing rules for 
the GCSP. These are given by 

(J)m( Tcm/Pcm )2/3 = Z ~ XiXj(DiJ (Tcij/Pcij) 2/3 (6) 
i j 

(T~cm/Pcm) = 2 2 xixj(T~cJPcij) (7) 
i j 

(Tcm/Pcm) = ~ Z xixj( Tcs ) (8) 
i j 

with the cross interaction terms ( i~j)  given by 

Too.= ~o" ( Tr (9) 

(T~gPou) u3 = q,;" { ( T J P c , , )  1/~ + (TcJPr (10) 

~o~/= (co,, + 0~ij)/2 ( 11 ) 

Here ~u and q~ are binary interaction coefficients which are usually 
obtained from experimental data, In all the calculations that follow, 
however, ~ and ~/0 have been set equal to unity, so that the properties of 
mixtures are predicted from the properties of the pure reference fluids. 

The mixing rules have been tested and found to yield good predictions 
for hydrocarbon-hydrocarbon, hydrocarbon-alcohol, and hydrocarbon- 
water systems. They appear to work well for both thermodynamic and 
transport properties. 

It should be noted that the reducing parameters Tom and Pcm are 
determined solely by Eqs. (7) and (8). The mixture acentric factor given by 
Eq. (6) is then a surface fraction weighted average of the pure component 
acentric factors, since Tcm/Pcm is proportional to the reduced volume. It 
should also be noted that Eqs. (6)-(8) can be solved without any iterations. 

2.2. Reference-Fluid Properties 

An important characteristic of the generalized corresponding-states 
principle is the freedom to choose reference substances which are similar to 
the particular fluids of interest. We have established [4] that this ability to 
choose the reference substances leads to very accurate, easy-to-apply 
corresponding-states theory. We have further shown E7, 8] that the ability 
to vary the reference substances is more important than providing a highly 
accurate representation of fixed substances. Thus, for example, using the 
GCSP with a simple cubic equation-of-state representation for one 
hydrocarbon and one alcohol (the reference fluids) yields accurate predic- 
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tions of phase equilibria for hydrocarbon-alcohol systems. Moreover, these 
predictions have been shown to be more accurate than those of the Lee- 
Kesler corresponding states method, which uses the l 1-constant BWRS 
equation for the two (fixed) reference fluids. In view of these findings, we 
have chosen to represent our reference-fluid properties by tlhe cubic 
equation of state of Patel and Teja [10] in this work. This equation 
reproduces many of the good features of the Soave and Peng-Robinson 
equations of state for nonpolar fluids but overcomes some of the 
limitations of these equations for polar fluids. The Patel-Teja (PT) 
equation is of the form 

P = RT/ (v  - b) - a [ T ] / { v ( v  + b) + c(v - b)} (12) 

where R is the gas constant, a [ T ]  is a Soave-type temperature-dependent 
function (which contains a single substance-dependent parameter F), and b 
and c are constants related to To, P~, and (~ (which is equal to the 
calculated value of Pc Vc/RTc). The equation of state therefore contains 
four substance-specific parameters, To, Pc, ~c, and F. For nonpolar fluids, 
~c and F can be correlated with the acentric factor co, so there are only 
three substance-specific parameters for such fluids, as with other cubic 
equations of state. An important difference between the PT equation and 
other cubic equations is that the PT equation does not require all fluids to 
have the same critical compressibility (~. This leads to improved predic- 
tions of liquid densities while, at the same time, maintaining an accurate 
description of the vapor pressure curve via a[T] .  

3. RESULTS AND DISCUSSION 

An extensive evaluation of six different methods for the calculation of 
enthalpy was made by Tarakad and Danner [9] using 5632 experimental 
data points. Overall the methods of Starling [11] and Lee and Kesler [2] 
were selected as being superior to other equation-of-state and correspon- 
ding-states methods and the Lee Kesler method was found to be the most 
reliable. We have used a subset of the Tarakad and Danner data and have 
compared enthalpy departures using the GCSP and the Lee-Kesler 
methods. Table I gives a summary of the systems studied, the range of tem- 
perature and pressure of the data, and the data references. Only single- 
phase data were used in the study, as two-phase enthalpies would require 
additional calculations that are not relevant to the comparison. Data were 
then divided into groups of high-density and low-density data based on the 
two-phase enthalpies. 

840/8/2-8 
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Table I. Summary of Systems Studied 

Temperature Pressure No. of 
No. System range (K) range (MPa) points Ref. No. 

1 Benzene 466-644 1.38-9.65 218 15 
2 n-Octane 297-589 1.38 9.65 131 16 
3 n-Hexadecane 297-622 0.17 9.65 72 17 
4 cis-Decalin 297-589 0.17-9.65 27 18 
5 Tetralin 297-622 0.17-9.65 66 19 
6 Benzene + n-pentane 297-644 1.38-9.65 712 20 
7 Benzene + n-octane 466-589 1.38-9.65 417 15 
8 n-Pentane + n-octane 297-589 1.38 9.65 424 16 
9 n-Pentane + tetralin 297-611 0.17-9.65 398 19 

10 Benzene + ethanol 394~533 0.69-10.34 116 21 
11 Pentane + ethanol 394-533 0.69-10.34 158 21 
12 Benzene + cyclohexane 511-583 2.76-9.75 393 22 
13 Methane + CO2 273-363 3.(~13.7 42 23 
14 Methane + ethane + CO2 263-363 3.0-13.7 56 12 
15 Benzene + n-octane + tetralin 297 589 0.28 9.65 110 24 
16 Methane + nitrogen 111-366 0.07-10.34 615 13 

Table II gives the absolute average deviation and percentage deviation 
between experimental and calculated properties for the Lee-Kesler and 
GCSP methods. It should be noted that, although low-density systems are 
close to the ideal-gas state, the percentage deviations between experimental 
and predicted enthalpy departures are large for these systems because of 
the absolute magnitude of the enthalpies involved. Therefore, absolute 
average deviations in enthalpy departures are also shown in Table I! in 
order to put errors into perspective. The GCSP predictions are comparable 
with the LKCSP predictions, with the LKCSP method being slightly better 
for hydrocarbon systems and the GCSP method being slightly better for 
nonhydrocarbons. 

The LKCSP method uses an ll-constant modified BWR equation of 
state to represent the (fixed) reference fluids. Their spherical reference-fluid 
equation of state is based primarily on the properties of methane, while the 
nonspherical reference equation is based on the properties of n-octane. 
However, Lee and Kesler adjusted the constants somewhat to yield quan- 
titatively correct behavior for many hydrocarbon systems. In contrast, the 
GCSP method uses a less accurate (and simpler) equation of state to 
represent the reference fluids but has the flexibility of reference-fluid choice. 

For the binary systems studied, the reference fluids chosen for the 
GCSP calculations were generally the system components. For 
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Table II. Comparison of Experimental and Predicted Enthalpy and Entropy Departures 

Liquid Vapor 

GCSP LKCSP GCSP LKCSP 

System 
No. a AAPD b AAD ~ AAPD b AAD ~ AAPD b AAD c AAPD h AAD" 

Enthalpy departures 

1 2.81 0.374 4.30 0.471 4.93 0.129 3.16 0.093 
2 2.27 0.468 1.59 0.324 t6.71 0.877 10.19 0.529 
3 2.21 1.280 1.76 0.997 51.90 2.190 39.10 1.680 
4 1.18 0.424 1.53 0.547 36.00 0.868 19.40 0.574 
5 0.79 0.293 1.06 0.388 23.70 0.386 10.72 0.161 
6 5.39 0.471 8.67 0.860 17.44 0.377 15.73 0.349 
7 4.90 0.708 7.64 1.100 11.45 0.301 12.19 0.317 
8 5.06 0.711 3.37 0.418 19.57 0.743 i8.17 0.679 
9 5.58 0.867 5.46 0.873 21.67 0.372 t9.24 0.326 

10 10.81 1.796 16.9t 2.491 29.90 0.400 47.26 0.667 
11 11.38 1.079 19.15 1.882 26.50 0.363 34.73 0.492 
12 5.51 0.558 10.84 1.237 13.03 0.490 17.54 0.669 
13 5.01 0.t16 3.32 0.127 
14 8.99 0.303 8.20 0.344 
15 4.07 0.844 5.45 1.039 14.34 0.267 10.24 0.190 

Entropy departures 

16 2.01 1.56 

"Numbers  correspond to systems given in Table I. 
b AAPD = (l/n) Y~ [[Hi, calc- H,axpl/Hi.~xp] x 100, in %. 

~ A A D =  ( l / n ) Z  [Hi.calc-H,,e~r~], in kJ-mol  i. 

hydrocarbon-hydrocarbon mixtures such as n-pentane+n-octane, the 
LKCSP method is better, as expected, because of the more accurate 
reference-fluid representation. When one of the components is an aromatic 
substance, however, as in the case of the benzene+n-pentane and 
benzene + n-octane systems, the GCSP method gives better predictions. 

Figures 1 and 2 show deviation plots of the benzene+n-pentane 
system for the GCSP and LKCSP methods. High percentage errors can be 
expected for both methods in the region of low reduced pressures and high 
reduced temperatures, since the ideal gas is used as the reference state and 
the magnitude of the enthalpy deviations is small. In the compressed liquid 
region and fluid region where enthalpy values are large, the GCSP method 
gives better predictions by about 3 %. 
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Fig. 1. GCSP  error map of the 0.814 mol% benzene +0.186 mol% n-pentane system. 
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When the reference fluids are different from the system components, as 
is the case with the n-pentane+tetralin system, predictions using the 
GCSP method are similar to those using the LKCSP method. We found 
that in choosing reference fluids, it is important that the reference-fluid 
acentric factors bracket the acentric factors of the system components. That 
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Fig. 2. LKCSP  error map of the 0.814 mol% benzene + 0.186 mol% n-pentane system. 
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is, it is generally less accurate to perform extrapolations of a property with 
the acentric factor, unless the properties of the reference fluids are known 
accurately. 

The benzene+cyclohexane system is peculiar in that the chemical 
nature of the components is similar and the acentric factors are identical. 
For such a case, the reference fluids must be chosen to be different from the 
pure components (in this case, benzene + n-hexane). A suitable choice can 
usually be found using components of similar chemical nature whose acen- 
tric factors bracket the acentric factors of the system components. 

Systems containing alcohols are much more difficult to predict and 
can be expected to yield higher errors due to hydrogen bonding that is not 
accounted for by the GCSP method. Nevertheless, the predictions using the 
GCSP method are better than those using the LKCSP method. However, 
the overall predictions for both methods are somewhat higher than for the 
other systems. 

A binary system and a ternary system containing carbon dioxide were 
also examined. Ng and Mather [12] determined residual enthalpies of 
these mixtures from isothermal throttling experiments and compared their 
results with predictions using six different methods, including the LKCSP 
method. High errors were found for the LKCSP method. We also found 
that the GCSP method gave high errors for these mixtures and attribute 
this to the inability of o~ to account adequately for quadrupolar forces. 

Entropy departures were compared using the data of Bloomer [13]. 
Both methods gave low errors as expected for this simple system. 

One of the advantages of using a cubic equation of state for the 
reference fluids is that very little information is required for the particular 
reference fluids chosen. In the case of the Patel-Teja equation, a knowledge 
of To, Pc, a vapor pressure datum, and a liquid density datum is sufficient 
to obtain the equation-of-state constants. If the vapor pressure and liquid 
density are not available, we have shown recently [14] that the boiling 
point can be used to obtain the constants F and ~c via the effective carbon 
number concept. Thus, the reference-fluid equation-of-state constants can 
be generated from a minimum of data. 

4. CONCLUSIONS 

The GCSP is a valuable technique for thermodynamic property 
prediction. It is a simple technique, and no iterations are required for 
entropy and enthalpy calculations. Using a cubic equation to represent the 
reference fluids gives the method flexibility, while maintaining accuracy. In 
general, the GCSP method leads to better predictions of enthalpy and 
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entropy deviations than other methods which employ complex equations 
for (fixed) reference fluids. 

When using the acentric factor as the third correlating parameter, it is 
important that the reference fluids should be chosen such that they are 
similar to the system components and their acentric factors should lie on 
either side of the acentric factors of the system components. 

Good predictions for systems containing polar molecules can also be 
obtained using this method, although the errors can be expected to be 
greater than those obtained for nonpolar mixtures, unless adjustable 
parameters are included in the treatment. 
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